ISOLLE: LLE with geodesic distance

نویسندگان

  • Claudio Varini
  • Andreas Degenhard
  • Tim W. Nattkemper
چکیده

We propose an extension of the algorithm for nonlinear dimensional reduction locally linear embedding (LLE) based on the usage of the geodesic distance (ISOLLE). In LLE, each data point is reconstructed from a linear combination of its n nearest neighbors, which are typically found using the Euclidean distance. We show that the search for the neighbors performed with respect to the geodesic distance can lead to a more accurate preservation of the data structure. This is confirmed by experiments on both real-world and synthetic data. r 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ISOLLE: Locally Linear Embedding with Geodesic Distance

Locally Linear Embedding (LLE) has recently been proposed as a method for dimensional reduction of high-dimensional nonlinear data sets. In LLE each data point is reconstructed from a linear combination of its n nearest neighbors, which are typically found using the Euclidean Distance. We propose an extension of LLE which consists in performing the search for the neighbors with respect to the g...

متن کامل

A Convex Matrix Optimization for the Additive Constant Problem in Multidimensional Scaling with Application to Lle∗

The additive constant problem has a long history in multi-dimensional scaling and it has recently been used to resolve the issue of indefiniteness of the geodesic distance matrix in ISOMAP. But it would lead to a large positive constant being added to all eigenvalues of the centered geodesic distance matrix, often causing significant distortion of the original distances. In this paper, we refor...

متن کامل

Discussion of "Spectral Dimensionality Reduction via Maximum Entropy"

Since the introduction of LLE (Roweis and Saul, 2000) and Isomap (Tenenbaum et al., 2000), a large number of non-linear dimensionality reduction techniques (manifold learners) have been proposed. Many of these non-linear techniques can be viewed as instantiations of Kernel PCA; they employ a cleverly designed kernel matrix that preserves local data structure in the “feature space” (Bengio et al...

متن کامل

Research of Plant-Leaves Classification Algorithm based on Supervised LLE

A new supervised LLE method based on the fisher projection was proposed in this paper, and combined it with a new classification algorithm based on manifold learning to realize the recognition of the plant leaves. Firstly, the method utilizes the Fisher projection distance to replace the sample's geodesic distance, and a new supervised LLE algorithm is obtained .Then, a classification algorithm...

متن کامل

3D Face Recognition using Patch Geodesic Derivative Pattern

In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2006